В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор , мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух резисторов и транзистора.
Управление мощностью с помощью транзистора
Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:
На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора , а следовательно, мощность свечения самой лампы.
Транзистор — это сложная штука. Если не знаете что такое, то лучше для начала прочитайте очень объёмную статью с нашего сайта.
Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.
Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока . Правило делителя напряжения . То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы I б . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора I к .
Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток I б , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора Iк , который также течет и через лампочку накаливания.
Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.
Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома : I=U/R . Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉
И еще один небольшой нюанс.
Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера. Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.
Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники — мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.
Такой резистор я подбирал с помощью магазина сопротивления . Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным .
Регулятор свечения лампочки на транзисторе
Ну а теперь дело за практикой. Собираем схему в реале:
Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:
Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:
Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно — убавил обороты, стало слишком жарко — прибавил 😉
Прошаренные чайники-электронщики могут сказать: «А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?
Да, можно.
Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная. В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток. Вспоминаем формулу выделяемой мощности на нагрузке: P=I 2 R . Переменный резистор сгорит (проверено не раз на собственном опыте).
В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.
Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.
Резюме
Главное предназначение транзистора — управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.
Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.
Резистор в базе служит для ограничения протекающего тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.
При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим — это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.