Великие электрики в истории физики, изложенной курам на смех

Великие электрики в истории физики, изложенной курам на смех Первым свое открытие сделал Луиджи Гальвани. Вот какой забавный случай с ним произошел. Он, видите ли, был гурман. Впрочем, гурманов и без него хватало, а вот Гальвани был еще и пижон — в этом-то сочетании все дело. Он раз потребовал, чтобы для вкушания лягушачьих лапок ему подали не какие-нибудь там серебряные ножичек и вилочку, а чтобы ножичек — ладно уж, серебряный, но зато вилочку — непременно платиновую. Официант, предвкушая развлечение, не стал спорить. Едва Гальвани тыкнул свои орудия в недожаренные лапки, как этот деликатес сделал попытку сигануть из тарелки. “Что т…т…акое?”- обомлел Гальвани. “Да Вы же их просто гальванизируете, сеньор!”- объяснил ему официант, давясь от смеха. Так родилась электрофизиология…

В своей анатомической Гальвани зарезал целую партию лягушек и приступил к научно поставленным опытам. Вывод он сделал по тем временам ошеломляющий — у лягушки, дескать, есть такое же “животное электричество”, как и у электрического ската. “О, времена, о, нравы!- простонал, узнав об этом, Алессандро Вольта, который любил животных, а лягушек — особенно.- Дело здесь не в лягушке, а в двух разных металлах!” В доказательство своих слов Вольта продемонстрировал изящный опыт, в котором он, в отличие от Гальвани, остроумно использовал вместо лягушки собственный язык.

Кстати, язык для этого не требовал отрезания и препарирования, он и так хорошо работал. “И все-таки неубедительно”,- возразил на это Гальвани и, чтобы доказать свою правоту, учинил над лягушкой такое, что препарированный образец трепыхался уже без прикосновений всяких там металлов. Этого Вольта уже не смог вынести, в связи с чем он и изобрел свой знаменитый столб — источник контактного напряжения. Возможно, что это изобретение спасло от преждевременной кончины не одну тысячу лягушек, поскольку Гальвани подумывал об их четвертовании в промышленных масштабах, чтобы смонтировать первую в мире электростанцию — при дворе Папы Римского. Тем не менее, борьба между “гальванианцами” и “вольтианцами” продолжалась еще довольно долго. И только В.И.Ленин впоследствии установил, что, не владея диалектическим подходом к вопросу, чушь пороли и те, и другие.


Но вольтов столб — это вам не стеклянный диск с меховыми обкладками, его вращать не надо! Для того, чтобы как следует отметить такое открытие, Вольта пригласил на кружку пива своих заграничных друзей — Ома и Ампера. Осушив свою кружку, Вольта расчувствовался. “Друзья!- воскликнул он. — Эту нашу встречу надо увековечить!”-”И то верно, — подхватил Ампер.- А не сочинить ли нам всем вместе какую-нибудь формулку?”-”Только что нибудь попроще,- взмолился Ом,- а то я от радости плохо соображаю.”-”Не беда,- сказал Вольта,- один Ампер чего стоит!”-”Один Ампер чего стоит?- задумчиво повто- рил Ампер.- А вот чего стоит один Ампер!”- воскликнул он и набросал свой вариантец. “Вот это да!- выдохнул Вольта.- Но как же мы назовем этот — без преувеличения сказать — закон?” И здесь-то, к сожалению, друзья чуть было не перессорились! В итоге решили тянуть жребий, и Ому, как обычно, повезло.

Между тем Эрстед уже давно обращал внимание, что во время гроз пахнет не только озоном, но и крупными открытиями. Он собрал богатую статистику случаев перемагничивания стрелки компаса вследствие удара молнии — итог одного из таких случаев и является сюжетом знаменитой картины И.Репина “Приплыли”. Но, позвольте, господа, ведь молния — это электричество, а компас — это магнит! Значит, электричество и магнетизм как-то связаны! “Еще бы они не были связаны,- живо откликнулся Ампер.- Причем не “как-то”, а очень даже: весь ваш магнетизм — это электричество и есть!”- “Как это?”- похолодел Эрстед. Ампер немного подумал и объяснил: “Понимаете, элек? ?рический ток — это движение электричества, а магнетизм — это просто кольцевые токи, и ничего больше.”- “Но я надеюсь,- осторожно заметил Эрстед,- что под кольцевыми токами Вы подразумеваете всего лишь токи по кольцевым проводникам, а вовсе не орбитальное движение электронов в атомах?” -”Разумеется,- улыбнулся Ампер.- Не будем забегать вперед.”

Благодаря открытиям Эрстеда и Ампера лаборатория Фарадея была оборудована по последнему слову: провода-провода-проводочки, магнитики, включатели и выключатели. Гальванометры тогда были в большом дефиците, поэтому экспериментаторы нашли остроумный выход. Они наловчились проверять наличие электрического напряжения на ощупь, причем для повышения чувствительности срезали себе кожу на кончиках пальцев. В общем, жалко было на них смотреть, на издерганных. Кстати, в биографии Шерлока Холмса есть эпизодик на эту тему. “Холмс, только послушайте, что писал “Санди Телегрэф” пятьдесят лет назад,- начал, как обычно, Ватсон.- Новости из Королевского института. Майкл Фарадей доказал тождественность всех видов электричества: “животного”, “магнитного”, гальванического, термоэлектричества, а также электричества, возникающего от трения. Как же это ему тогда удалось?”- “Элементарно, Ватсон!- без усилия объяснил Холмс.- Все они дергали одинаково!”- “Боже мой, Холмс,- проговорил обалдевший Ватсон,- неужели и это — с помощью дедукции?”- “Да, мой друг. Кстати, о дедукции. Хотите знать, что еще сделал Фарадей? Он открыл явление, которое я бы назвал электромагнитной дедукцией, в честь моего метода. Но Майкл, конечно, поступил наоборот.” — “А Вы слышали, Холмс, однажды Фарадею понадобилось несколько электрических зарядов. Как быть? Голыми руками их не возьмешь! Так он снял свой цилиндр, обклеил его изнутри фольгой и наловил их, сколько надо. Все после него так делают…”-”Занятно”,- пустил колечко дыма Холмс.- “А еще,- несло дальше Ватсона,- как-то раз он насыпал железные опилки прямо на силовые линии магнита, и линии натяжений в эфире стали всем очевидны!”- “Знаете, Ватсон,- прищурился Холмс,- я бы не торопился с такими фундаментальными выводами!”- и они по-дружески расхохотались.

Эстафету от Фарадея подхватил Максвелл. Он поставил себе благородную по тем временам цель — построить механическую модель эфира. Понимаете, Эйнштейн тогда еще не появился на свет, поэтому Максвелл по простоте своей считал, что электромагнитные волны — это механические упругие волны в эфире. Причем эфир, несмотря на завет мудрого Демокрита, считался сплошной средой, ибо если был бы он дискретным, то не потянул бы он роль посредника. Тут, понимаете, дело принципа: либо заряды взаимодействуют через пустоту, либо — через посредника. И если уж выбираешь посредника, так будь добр, чтобы насчет пустот — ни-ни! Вот Максвелл и старался. Обладая богатой фантазией, он придумывал разные там колесики, звездочки, шестереночки. Почти все было как в сказке: дерни, деточка, за один зарядик — он крутанет ближайшие колесики, которые в свою очередь заденут за шестереночки — соседний зарядик и сдвинется. Но — на тебе! — между колесиками и шестереночками всегда оставались, будь они неладны, промежуточки. И так — несколько раз! Когда Максвелл дошел до остервенения, его посетила гениальная мысль. “Все эти колесики,- подумал он,- нужны лишь для того, чтобы записать уравнения движения эфира. Получи я уравнения для его механич еских натяжений — потом на эти колесики с промежуточками начхать я хотел, эфир будет как бы сплошным!”

Так он, кстати, и сделал: получил и начхал. То-то поначалу было радости у коллег! Один из них, помнится, воскликнул: “Не боги ли начертали эти уравнения, до чего красиво!” Он не догадывался, что из этой красоты получится дальше. А получилась из нее, сами понимаете, значение скорости электромагнитной волны в эфире. Но раз уж имеет место скорость волны, то логично предположить, что имеет место и сама волна, не так ли? Кстати, следует принимать во внимание, что, говоря об злектромагнитных волнах, Максвелл и его современники имели в виду волны, мягко говоря, радиодиапазона, а отнюдь не видимый свет. Свет и радиоволны неспроста считались тогда двумя принципиально различными феноменами — ведь о свете не имели представления разве только слепцы, а что касается радиоволн, так их еще даже не открыли. Можете вообразить, как екнули сердечки физиков, когда с легкой руки Максвелла скорость этих еще не открытых радиоволн с какой-то стати практически совпала со скоростью света, которую тогда уже измерили и Физо, и Фуко, и все остальные, кому не лень. В принципе, конечно, оставалась возможность одного из двух: либо перемудрил Максвелл, либо недомудрили Физо, Фуко, и все остальные, кому не лень. А если нет? Вдруг это совпадение — неспроста? Короче, срочно потребовалось, открыв радиоволны, измерить их скорость, да поточнее. И так как свято место долго пусто не бывает, то Герц-молодец тут и отличился. Подумать только — оказалось, что эти волны шастают табунами, особенно во время гроз: стоило молнии шваркнуть, детекторы этими волнами буквально захлестывало!

Когда Попов увидел это своими глазами, причем с помощью детектора, склепанного своими руками, то до мысли о долгожданном открытии радио он дошел своим умом. Он понял главный секрет — приемная аппаратура должна быть сделана добротно. То есть она должна обладать хорошей этой самой, как бы это сказать… Долго мучился Попов, подбирая название для этого свойства. Сейчас-то каждый радиолюбитель знает, что добротная аппаратура должна обладать хорошей добротностью, чем же еще! А Попов-то хотел изобрести термин, не используя готовеньких словечек откуда ни попадя, чтобы был виден, так сказать, полет фантазии!

Эх, знал бы он, как будут обстоять дела с этим полетом фантазии лет через шестьдесят, он бы, наверное, не испытывал таких мук творчества. Вот, полюбуйтесь. Начнем с лучей. Они, как известно, бывают мягкие и жесткие. А шумы? Тоже ничего — например, белый да розовый. Далее на очереди стоят частоты. Пожалуйста: затянутые, захваченные и привязанные. А как насчет спектров? Тут можно особо отметить полосатых и зарезанных. Что касается элементарных частиц, то среди них встречаются странные и очарованные, обладающие цветом, ароматом и, само собой, красотой. А возьмите атомные ядра. Они бывают материнскими и дочерними (но почему-то не бывают отцовскими и сыновними). А еще среди них попадаются меченые, обстрелянные и ободранные. Атомы, сидя в яме, могут еще радоваться своей степени свободы. А могут резво мигрировать, очевидно, в поисках каких-никаких вакансий; но со временем приходит усталость, идет старение и, наконец, наступает предел выносливости, когда люминофоры деградируют, а уровни энергии вырождаются. И все-таки больше всего, по-видимому, повезло электронам. Их, оказывается, можно связать, а можно, так и быть, освободить. Тогда порой они могут вальсировать, а когда не очень жарко — даже спариваться. Тут уж и фотонам приходится краснеть.

Это все к тому, что бывают отверстия, а бывают, между прочим, и дырки! А то вон одна машинистка, печатая дипломный проект бедолаге-злектронщику, в порядке творческой инициативы везде заменила ненаучное слово “дырка” на научное — “отверстие”. Вот до чего доводит скудоумие при наречении нового термина!

Ну, а что касается скорости радиоволн в сравнении со скоростью света, то все оно чудненько сошлось, так что Физо и Фуко, действительно, старались не зря. На радостях электромагнитную природу света окончательно разоблачили, в результате чего шкала частот электромагнитных волн развернулась во всю свою дурную ширь — от нуля до самой бесконечности. Пустячок, как говорится, а интегрировать приятно.

Эйфория по поводу всех этих свершений длилась до тех пор, пока какой-то шутник не спросил: “Господа теоретики! Дак ежели скорость света фиксирована в ефире, и ежели мы, к примеру, в ентом ефире движемся, дак для нас-то скорость света будет уже другая, ась?”- “Соображаешь, — ответили ему теоретики.- Кстати, пускай экспериментаторы этим займутся, а то давно уже дурака валяют.”

Дело в том, что к тому времени уже имелись кой-какие данные на этот счет: вроде получалось, что движение в эфире на скорость света не влияет. “Что же вы хотите,- комментировали это теоретики,- точность у этих опытов, извиняемся, плохонькая (“до первого порядка”, как они выражались), маловато будет. Так что, цели ясны, задачи определены — за работу, господа.”

…Что же касается технической физики, то здесь тоже не зевали. И даже время от времени демонстрировали свои достижения, для чего устраивали Всемирные выставки. На одной из них можно было видеть молодого человека приятной наружности, скромно держащего кончиками пальцев обычную электролампу — за цоколь. При этом лампа, как бы это сказать… в общем, она светилась. Хотя Никола Тесла (а это был он) и не подвел к ней каких-нибудь “тонюсеньких проводков”. Заинтересованным посетителям Тесла выкладывал все как на духу. Дескать, проводков и не надо, ток идет прямо через мое тело. Видите, я прислонился к генератору? Отошел — гаснет… Что Вы, это совсем не больно, потому что ток высокочастотный… Да, Вы правы, что я держу лампу одной рукой, и проводник получается как бы один, а не два. А два и не нужно, я же говорю Вам, что ток высокочастотный… Да, моя рука — плохой проводник. Но для высокочастотных токов провод даже лучше делать из диэлектрика… Да, Вы совершенно правильно угадали — можно обойтись вообще без проводов. Правда-правда! Вот, изволите ли взглянуть, электродвигатель. Беру его в руки — подводящих проводов нет. А вон, видите, передающий генератор. Если угодно, я махну платочком ассистенту, он его запустит, и этот двигатель заработает!.. И ведь Тесла не шутил — по мановению платочка двигатель работал. Господи, да что же это такое! Эх, был бы на месте лопуха-посетителя какой-нибудь современный физик, он бы этого Николу сразу расколол. Он спросил бы, во-первых, какую же мощность надо излучать, чтобы эта сопля так вертелась? Попади я под такое излучение, у меня сразу же все волосы повылезли бы, а тут стоишь — и ничего, даже приятно. Во-вторых, а где же, кстати, передающая и приемная антенны-то? Ведь их же нет! Шутишь, брат! Ой, да мало ли чего еще он спросил бы — известно, как шибко грамотны современные физики. А то ведь стоял посетитель с разинутым ртом и выслушивал байки о том, что обмотки здесь не просто высокочастотные, а еще и резонансные, и что тогда ни проводов, ни антенн не нужно… В общем, ясно, что тебе показывают фокус, но секрета его не понял никто. Сгоряча решили выдать автору свидетельство типа “да, работает, но принципы работы не являются физическими”- всяк сверчок знай свой шесток, мол. Однако, вовремя одумались: “Батюшки! Так значит, бывают нефизические принципы работы? Спаси и сохрани!” И не выдали свидетельства.

Потужил-потужил Тесла, да делать нечего — надо дело делать! Вернулся он в Лонг-Айленд и ну руководить там строительством Башни! Да какой Башни! С ее помощью он собирался обеспечить бесперебойную работу своих чудо-двигателей, находящихся в любых точках земного шара!

Фантастика, говорите. Конечно, Вам сейчас легко говорить. А каково было специалистам тогда, в разгар строительства? Короче, почти достроенную башню пришлось на всякий случай из строя вывести. Еще спасибо доброму дяде Нобелю за динамит, а то горела бы она долго, зараза. Опять же, нет худа без добра: динамит динамитом, а не будь его — с каких шишей выплачивалась бы Нобелевская премия?! Тесла, между прочим, был одним из первых ее лауреатов. Только он от нее отказался. Ну, чудак, право. Другим больше досталось!

Автор: О.Х.Деревенский

Информация, опубликованная на данном веб-сайте, представлена исключительно в ознакомительных целях, за применение этой информации администрация сайта ответственности не несет.

EnglishRussianUkrainian