ЭДС, разность потенциалов и напряжение — что это и в чем разница

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

Разность электрических потенциалов

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Величина электрического потенциала

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

Разность потенциалов

В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.

И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.

Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).

Вольтметр постоянного тока

Электростатическое поле — электрическое поле, создаваемое неподвижными электрическими зарядами. Для того, чтобы электрические заряды были неподвижны, на них не должны действовать силы в тех местах, где эти заряды могли бы двигаться. Но внутри проводников заряды могут свободно двигаться, поэтому при наличии электрического поля внутри проводников в них возникло бы движение зарядов (электрический ток).

Следовательно, заряды могут оставаться неподвижными только в том случае, если они создают такое поле, которое везде внутри проводников равно нулю, а на поверхности проводников направлено перпендикулярно к поверхности (т. к. иначе заряды двигались бы вдоль поверхности).

Для этого неподвижные заряды должны располагаться только по поверхности проводников и при том именно таким образом, чтобы электрическое поле внутри проводников было равно нулю, а на поверхности перпендикулярно к ней.

Все сказанное относится к случаю неподвижных зарядов. В случае движения зарядов, т. е. наличия токов в проводниках, в них должно существовать электрическое поле (т. к. иначе не могли бы течь токи) и, следовательно, движущиеся заряды располагаются в проводниках, вообще говоря, не так, как неподвижные, и создают электрические поля, отличные по своей конфигурации от электростатического поля. Но по своим свойствам электростатическое поле ничем не отличается от электрического поля движущихся зарядов.

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Если сторонние силы отсутствуют, то работу совершит лишь потенциальное электрическое поле , и в этом случае электрическое напряжение между точками А и В цепи будет численно в точности равно разности потенциалов между данными точками, то есть отношению работы по переносу заряда из точки А в точку В к величине заряда q:

Разность потенциалов между точками А и B

Однако в общем случае напряжение между точками A и B отличается от разности потенциалов между этими точками на работу сторонних сил по перемещению единичного положительного заряда:

Напряжение между точками A и B

Эту работу сторонних сил как раз и называют электродвижущей силой на данном участке цепи, сокращенно — ЭДС:

ЭДС

Электродвижущая сила — ЭДС

Электродвижущая сила — ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

ЭДС гальванического элемента

ЭДС является скалярной физической величиной, характеризующей работу непосредственно действующих сторонних сил (любых сил за исключением электростатических) в цепях постоянного или переменного тока. В частности, в замкнутой проводящей цепи ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Здесь при необходимости вводят в рассмотрение электрическую напряженность сторонних сил Еex , являющуюся векторной физической величиной, равной отношению величины действующей на пробный электрический заряд сторонней силы к величине данного заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Электродвижущая сила — ЭДС

Можно говорить об электродвижущей силе на любом участке электрической цепи. Это будет, по сути, удельная работа сторонних сил лишь на рассматриваемом ее участке. ЭДС гальванического элемента , к примеру, есть ни что иное, как работа сторонних сил при перемещении единичного положительного заряда только внутри этого гальванического элемента , а именно — от одного его полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит (!) от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока за пределами данного источника равна нулю.

ЭДС может быть получена различными способами, из которых можно назвать следующие:

  • при помощи источников ЭДС, использующих химические процессы (гальванические элементы, аккумуляторы — химические источники тока);

  • при помощи источников ЭДС, в которых используются свойства магнитного поля (электрические машины — генераторы);

  • при помощи источников ЭДС, в которых тепловая энергия преобразуется в электрическую (термоэлектрические преобразователи);

  • при помощи источников ЭДС, преобразующих энергию светового излучения в электрическую (фотоприемники, солнечные батареи).

Смотрите также: Роль источника ЭДС в электрической цепи и Напряжение, сопротивление, ток и мощность — основные электрические величины

Информация, опубликованная на данном веб-сайте, представлена исключительно в ознакомительных целях, за применение этой информации администрация сайта ответственности не несет.

EnglishRussianUkrainian