Что такое наноэлектроника и как она работает

Что такое наноэлектроника Область электроники, занимающаяся разработкой технологических и физических основ построения интегральных электронных схем с размерами элементов менее 100 нанометров, называется наноэлектроникой. Сам термин «наноэлектроника» отражает переход от микроэлектроники современных полупроводников, где размеры элементов измеряются единицами микрометров, к более мелким элементам — с размерами в десятки нанометров.

С переходом к наноразмерам, в схемах начинают доминировать квантовые эффекты, открывающие множество новых свойств, и, соответственно, знаменующие собой перспективы их полезного использования. И если для микроэлектроники квантовые эффекты зачастую оставались паразитными, ведь например с уменьшением размера транзистора его работе начинает мешать туннельный эффект, то наноэлектроника напротив — призвана использовать подобные эффекты как основу для наногетероструктурной электроники.

Домашняя электроника

Каждый из нас ежедневно пользуется электроникой, и наверняка многие люди уже замечают некоторые однозначные тенденции. Память в компьютерах увеличивается, процессоры становятся производительнее, размеры устройств уменьшается. С чем это связано?

В первую очередь — с изменением физических размеров элементов микросхем, из которых все электронные устройства по сути и строятся. Хоть физика процессов остается на сегодняшний день приблизительно такой же, размеры устройств становятся все меньше и меньше. Крупный полупроводниковый прибор работает медленнее и потребляет больше энергии, а нанотранзистор — и работает быстрее, и энергии потребляет меньше.

Нанотехнологии
Современные нанотехнологии на видео:

Известно, что все вещественные тела состоят из атомов. И почему бы электронике не достичь атомного масштаба? Эта новая область электроники позволит решать такие задачи, которые на обычной кремниевой базе просто принципиально невозможно решить.

Большой интерес вызывает сейчас графен и подобные ему монослойные материалы (смотрите статью — Неожиданные свойства привычного углерода ). Такие материалы в один атом толщиной обладают замечательными свойствами, которые можно комбинировать для создания различных электронных схем.

Например технологии связанные с зондовой микроскопией позволяют строить на поверхности проводника в сверхвысоком вакууме разнообразные структуры из отдельных атомов, просто переставляя их. Чем не основа для создания одноатомных электронных устройств?

Наноэлектроника и электроника
Нано-процессор

Манипуляции веществом на молекулярном уровне уже затронули многие отрасли промышленности, не обошли они и электронику. Микропроцессоры и интегральные микросхемы строятся именно так. Ведущие страны вкладываются в дальнейшее развитие данного технологического пути — чтобы переход на наноуровень происходил быстрее, шире, и совершенствовался бы далее.

Кое-какие успехи, кстати уже достигнуты. Intel в 2007 году заявила, что процессор на базе структурного элемента размером в 45 нм разработан (представили VIA Nano) и следующим шагом будет достичь 5 нм. IBM собираются добиться 9 нм благодаря графену.

Углеродные нанотрубки

Углеродные нанотрубки (графен) — один из наиболее перспективных наноматериалов для электроники. Они позволяют не только уменьшить размеры транзисторов, но и придать электронике поистине революционные свойства, как механические, так и оптические. Нанотрубки не задерживают свет, подвижны, сохраняют электронные свойства схем.

Особенно творческие оптимисты уже предвкушают создание портативных компьютеров, которые можно будет словно газету достать из кармана, или носить в виде браслета на руке, и по желанию как газету развернуть, и весь компьютер будет словно раскладной сенсорный экран высокого разрешения толщины бумаги.

Эффект сверхвысокого магнитного сопротивления

Еще одна перспектива для приложения нанотехнологий и применения наноматериалов — разработка и создание жестких дисков нового поколения. Альберт Ферт и Питер Грюнберг в 2007 году получили нобелевскую премию за открытие квантовомеханического эффекта сверхвысокого магнитного сопротивления (GMR-эффекта), когда тонкие пленки металла из чередующихся проводящих и ферромагнитных слоев значительно изменяют свое магнитное сопротивление при изменении взаимного направления намагниченности.

Управляя при помощи внешнего магнитного поля намагниченностью структуры, можно создавать настолько точные датчики магнитного поля, и осуществлять такую точную запись на носитель информации, что ее плотность хранения достигнет атомарного уровня.

Плазмотроника

Не обошла наноэлектроника и плазмотронику. Коллективные колебания свободных электронов внутри металла имеют характерную длину волны плазмонного резонанса порядка 400 нм (для частицы серебра размером 50 нм). Развитие наноплазмоники, можно считать, началось в 2000 году, когда ускорился прогресс в совершенствовании технологии создания наночастиц.

Оказалось, что передавать электромагнитную волну можно вдоль цепочки металлических наночастиц, возбуждая плазмонные осцилляции. Такая технология позволит внедрить в компьютерную технику логические цепочки, способные работать намного быстрее, и пропускать больше информации, чем традиционные оптические системы, причем размеры систем будут значительно меньше принятых оптических.

Лидерами в области наноэлектроники, и электроники вообще, сегодня являются Тайвань, Южная Корея, Сингапур, Китай, Германия, Англия и Франция.

Самую современную электронику производят сегодня в США, а самый массовый производитель высокотехнологичной электроники — Тайвань, благодаря инвестициям японских и американских компаний.

Китай — традиционный лидер в сфере бюджетной электроники, но и здесь ситуация постепенно меняется: дешевая рабочая сила привлекает инвесторов от высокотехнологичных компаний, которые планируют наладить в Китае свои нанопроизводства.

Хороший потенциал есть и у России. База в области СВЧ, излучательных структур, фотоприемников, солнечных батарей и силовой электроники позволяет в принципе создавать наукограды наноэлектроники и развивать их.

Этот потенциал требует экономических условий и организации для проведения фундаментальных исследований и научных разработок. Все остальное есть: технологическая база, перспективные кадры и научная квалифицированная среда. Необходимы лишь крупные инвестиции, а это зачастую оказывается ахиллесовой пятой…

Один из примеров применения нанотехнологий: Наноантенны для получения солнечной энергии

Информация, опубликованная на данном веб-сайте, представлена исключительно в ознакомительных целях, за применение этой информации администрация сайта ответственности не несет.

EnglishRussianUkrainian