Рассмотрены самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.

1. Электрический ток

Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.

К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.

Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов .

В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых «дырок». Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.

По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.

Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:

  • в среде, окружающей провода с током, наблюдается магнитное поле;

  • проводник, по которому течет ток, нагревается;

  • в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.

За направление электрического тока принимается направление движения ионов металла (т. е. положительных зарядов) при электролизе растворов солей. Направление перемещения электронов в металлических проводниках противоположно вышеуказанному направлению (они перемещаются от отрицательного полюса источника к положительному).

Единицей электрического тока является 1 ампер (1 А). Эта единица выбрана в качестве основной при записи закона электродинамического силового взаимодействия проводников, что устанавливает ее связь с основными механическими единицами.

Зависимость от времени электрического тока может быть различной. У постоянного тока направление и значение не изменяются. Направление и значение переменного тока изменяются, причем особенно важен для практики переменный ток синусоидальной формы . Если электрическому току свойственны черты и постоянного и переменного тока, то такой ток называется пульсирующим.

Сила, вызывающая движение электронов в проводнике (ток), распространяется со скоростью света. Однако сами электроны движутся в проводнике со скоростями всего порядка 1 мм/с.

Подробно про электрический ток:

Что такое электрический ток

В каком направлении течет ток

Эффект Пельтье: магическое действие электрического тока

2. Контур электрического тока

В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.

По второму проводу ток возвращается к источнику, проходит через него и снова начинает свой путь. На этом пути электрический ток черпает энергию для своего движения в источнике, а затем отдает ее приемнику обычно путем ее перехода в энергию другого вида — световую, тепловую, механическую и т.д.

В природе и технике встречается много подобных циклических процессов. Например, хорошую, но, конечно, формальную аналогию можно усмотреть в случае движения воды в системе охлаждения автомобиля. Вода получает тепловую энергию от стенок цилиндров двигателя внутреннего сгорания.

Даже без водяного насоса возникает движение воды по трубопроводам системы охлаждения и вода отдает большую часть полученной тепловой энергии в радиаторе, являющемся в данном случае приемником энергии.

Согласно современным представлениям электрический ток в проводниках образуется очень большим количеством мельчайших носителей заряда, называемых электронами. Электрический заряд следует рассматривать как одну из основных характеристик частиц и тел, которая проявляет себя в различного рода силовых взаимодействиях.

3. Электродвижущая сила, напряжение

Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС) . Источники электрической энергии называются источниками ЭДС .

На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения . Падение напряжения на участках цепи — приемниках называют короче просто напряжением .

Исходящий от источника ЭДС «импульс напряжения» распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.

Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.

В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.

Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.

Единицей ЭДС и напряжения является 1 вольт (1В).

Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.

Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.

Подробнее про электродвижущую силу и напряжение:

ЭДС, расзность потенциалов, напряжение — что это такое и в чем разница

Роль источника ЭДС в электрической цепи

Что такое напряжение, как повысить и понизить напряжение

Оптимальное напряжение в электросети для работы бытовых электроприборов

Трехфазная система электроснабжения

4. Электрическое сопротивление, закон Ома

Электрические величины (ток, напряжение и сопротивление) связаны между собой. Закон Ома определяет зависимость между током, протекающим по цепи, напряжением, приложенным к участку цепи, и сопротивлением этого участка цепи.

В общем виде этот закон формулируется так: электрический ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома для всей цепи формулируется так: ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи.

При своем движении по проводнику электроны сталкиваются с атомами и при этом теряют часть своей энергии, что приводит к нагреву проводника. Таким образом, наблюдается сопротивление движению электронов. Опыты показывают, что ток в участке электрической цепи тем больше, чем больше напряжение (падение напряжения) на этом участке.

При определенных условиях между электрическим током и напряжением существует линейная зависимость: I = GU .

Символом G в данном уравнении обозначена электрическая проводимость участка цепи, которая тем больше, чем меньшее сопротивление оказывает проводник прохождению электрического тока.

Однако на практике чаще применяется величина, обратная проводимости, которая называется электрическим сопротивлением : R = 1/G , откуда R = U/I . Это равенство служит для определения электрического сопротивления и известно под названием закона Ома для участка цепи.

Георг Симон Ом (1789—1854) обнаружил в 1826 году, что сопротивление многих материалов (проводников) не зависит от значения тока в проводнике и, следовательно, является константой.

Из закона Ома следует, что с ростом напряжения пропорционально увеличивается ток и что при увеличении сопротивления ток уменьшается. Единицей электрического сопротивления является 1 Ом.

На практике часто требуется определить электрический ток в некотором приемнике. Значение этого тока можно установить на основании известных значений электрического сопротивления приемника и поданного на него напряжения.

Если напряжение будет слишком велико, то ток может быть настолько большим, что вследствие теплового эффекта может разрушить приемник. Большие значения тока могут возникнуть в электрической цепи и при слишком малом сопротивлении или в случае прямого контакта (короткого замыкания) токоведущих частей цепи.

Для защиты устройств и приборов от перегрузок по току в электрические цепи включаются плавкие предохранители , которые перегорают, или автоматические выключатели , которые выключаются если ток в цепи превышает некоторое определенное значение.

Сопротивление проводника или провода тем больше, чем больше его длина l и чем меньше площадь его поперечного сечения S.

Значение электрического сопротивления зависит также и от материала, из которого изготовлен проводник. Каждый материал характеризуется электрическ ой констан той : удельным электрическим сопротивлением ρ . Следовательно, уравнение для расчета сопротивления проводника имеет следующий вид: R = (ρl)/S.

Сопротивление проводника зависит не только от его длины, площади поперечного сечения и материала, но и от температуры.


У ряда материалов значение электрического сопротивления при температуре вблизи абсолютного нуля скачкообразно падает до чрезвычайно малого значения. Это явление получило название сверхпроводимости . В настоящее время явление сверхпроводимости не получило еще широкого применения в технике, однако уже с успехом используется при решении некоторых специальных технических задач, как, например, при получении сверхмощных магнитных полей для физических исследований.

Подробнее об электрическом сопротивлении и законе Ома:

Что такое электрическое сопротивление и как оно зависит от температуры

Как рассчитать температуру нити лампы накаливания

Про закон Ома в популярном изложении

Способы соединения приемников электрической энергии

5 . Энергия и мощность

В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).

Принимая во внимание закон Ома, можно написать выражение для энергии электрического тока, преобразуемой в приемнике с сопротивлением R (закон Джоуля—Ленца): W = I 2 Rt

При расчетах электроэнергетических установок чаще в качестве единиц энергии выбирают ватт-час или киловатт-час. Электрическую энергию можно преобразовывать в другие виды энергии.

Электрический ток нагревает проводники, т. е. электрическая энергия преобразуется в тепловую энергию (тепловой эффект Джоуля). В электродвигателях электрическая энергия переходит в механическую (смотрите — Виды электродвигателей ).

Мощность можно определить как изменение энергии в единицу времени : P = dW/dt

Мощность в цепи постоянного тока: P = UI . Единица мощности — Вт.

В электроэнергетике широко применяются единицы мощности киловатт (кВт) и мегаватт (МВт), причем 1 кВт = 10 3 Вт и 1 М Вт = 10 6 Вт, а в слаботочной и измерительной технике — милливатт (мВт), причем 1 мВт = 10 -3 Вт. Мощность является важнейшей характеристикой электрических машин и приборов, так как для практики важна их способность производить работу в единицу времени.

Подробно про мощность и электроэнергию:

Приборы для измерения мощности — ваттметры

Как влияет мощность электроприборов на электропроводку

Как узнать какую мощность выдерживает кабель

Приборы учета электроэнергии — виды и типы, основные характеристики

Как узнать потребляемую мощность домашних электроприборов

Что такое коэффициент полезного действия (КПД)

Способы преобразования солнечной энергии и их КПД

Полезная статья по теме:

Напряжение, сопротивление, ток и мощность — основные электрические величины

Информация, опубликованная на данном веб-сайте, представлена исключительно в ознакомительных целях, за применение этой информации администрация сайта ответственности не несет.

admin

Share
Published by
admin

Recent Posts

Консоль удаленного рабочего стола(rdp console)

Клиент удаленного рабочего стола (rdp) предоставляет нам возможность войти на сервер терминалов через консоль. Что…

2 месяца ago

Настройка сети в VMware Workstation

В VMware Workstation есть несколько способов настройки сети гостевой машины: 1) Bridged networking 2) Network…

2 месяца ago

Логи брандмауэра Windows

Встроенный брандмауэр Windows может не только остановить нежелательный трафик на вашем пороге, но и может…

2 месяца ago

Правильный способ отключения IPv6

Вопреки распространенному мнению, отключить IPv6 в Windows Vista и Server 2008 это не просто снять…

2 месяца ago

Ключи реестра Windows, отвечающие за параметры экранной заставки

Параметры экранной заставки для текущего пользователя можно править из системного реестра, для чего: Запустите редактор…

2 месяца ago

Как управлять журналами событий из командной строки

В этой статье расскажу про возможность просмотра журналов событий из командной строки. Эти возможности можно…

2 месяца ago