R — это резистор , С — конденсатор , а вместе они образуют RC-цепь, то есть это цепь, которая состоит из конденсатора и резистора. Все просто 😉
Принцип работы RC цепи
Как вы помните, конденсатор представляет из себя две обкладки на некотором расстоянии друг от друга.
Вы, наверное, помните, что его емкость зависит от площади обкладок, от расстояния между ними, а также от вещества, которое находится между обкладками. Или формулой для плоского конденсатора:
где
Ладно, ближе к делу. Пусть у нас имеется конденсатор. Что с ним можно сделать? Правильно, зарядить 😉 Для этого берем источник постоянного напряжения и подаем заряд на конденсатор, тем самым заряжая его:
В результате, у нас конденсатор зарядится. На одной обкладке будет положительный заряд, а на другой обкладке — отрицательный:
Даже если убрать батарею, у нас заряд на конденсаторе все равно сохранится в течение какого-то времени.
Сохранность заряда зависит от сопротивления материала между пластинами. Чем оно меньше, тем быстрее со временем будет разряжаться конденсатор, создавая ток утечки . Поэтому самыми плохими, в плане сохранности заряда, являются электролитические конденсаторы, или в народе — электролиты:
Но что произойдет, если к конденсатору мы подсоединим резистор?
Конденсатор разрядится, так как цепь станет замкнутой. Разряжаться он будет через резистор. В разряде конденсатора через резистор и заложен весь принцип работы RC цепочки.
Постоянная времени RC-цепи
Но дело в том, что мы не можем наблюдать процесс разрядки конденсатора, просто посмотрев на RC цепь. Для этого нам понадобится цифровой осциллограф с функцией записи сигнала. Благо на моем рабочем столе уже есть место этому прибору:
Итак, план действий будет такой: мы будем заряжать конденсатор с помощью блока питания, а потом разряжать его на резисторе и смотреть осциллограмму, как разряжается конденсатор.
Соберем классическую схему, которая есть в любом учебнике по электронике:
в этот момент мы заряжаем конденсатор
потом переключаем тумблер S в другое положение и разряжаем конденсатор, наблюдая процесс разряда конденсатора на осциллографе
Думаю, с этим все понятно. Ну что же, приступим к сборке.
Берем макетную плату и собираем схемку. Конденсатор я взял емкостью в 100мкФ, а резистор 1 КилоОм.
Вместо тумблера S я буду вручную перекидывать желтый проводок.
Ну все, цепляемся щупом осциллографа к резистору
и смотрим осциллограмму, как разряжается конденсатор.
Те, кто впервые читает про RC-цепи, думаю, немного удивлены. По логике, разряд должен проходить прямолинейно, но здесь мы видим загибулину. Разряд происходит по так называемой экспоненте . Так как я не люблю алгебру и матанализ, то не буду приводить различные математические выкладки. Кстати, а что такое экспонента? Ну экспонента — это график функции «е в степени икс». Короче, все учились в школе, вам лучше знать 😉
Так как при замыкании тумблера у нас получилась RC-цепь, то у нее есть такой параметр, как постоянная времени RC-цепи . Постоянная времени RC-цепи обозначается буквой t , в другой литературе обозначают большой буквой T. Чтобы было проще для понимания, давайте также будем обозначать постоянную времени RC цепи большой буквой Т.
Итак, думаю стоит запомнить, что постоянная времени RC-цепи равняется произведению номиналов сопротивления и емкости и выражается в секундах, или формулой:
T=RC
где T — постоянная времени , Секунды
R — сопротивление, Ом
С — емкость, Фарады
Давайте посчитаем, чему равняется постоянная времени нашей цепи. Так как у меня конденсатор емкостью в 100 мкФ, а резистор 1 кОм, то постоянная времени равняется T=100 x 10 -6 x 1 х 10 3 =100 x 10 -3 = 100 миллисекунд.
Для тех, кто любит считать глазами, можно построить уровень в 37% от амплитуды сигнала и затем уже аппроксимировать на ось времени. Это и будет постоянная времени RC-цепи. Как вы видите, наши алгебраические расчеты почти полностью сошлись с геометрическими, так как цена деления стороны одного квадратика по времени равняется 50 миллисекундам.
В идеальном случае конденсатор сразу же заряжается, если на него подать напряжение. Но в реальном все-таки есть некоторое сопротивление ножек, но все равно можно считать, что заряд происходит почти мгновенно. Но что будет, если заряжать конденсатор через резистор? Разбираем прошлую схему и стряпаем новую:
исходное положение
как только мы замыкаем ключ S, у нас конденсатор начинает заряжаться от нуля и до значения 10 Вольт, то есть до значения, которое мы выставили на блоке питания
Наблюдаем осциллограмму, снятую с конденсатора
Ничего общего не увидели с прошлой осциллограммой, где мы разряжали конденсатор на резистор? Да, все верно. Заряд тоже идет по экспоненте ;-). Так как радиодетали у нас одинаковые, то и постоянная времени тоже одинаковая. Графическим способом она высчитывается как 63% от амплитуды сигнала
Как вы видите, мы получили те же самые 100 миллисекунд.
По формуле постоянной времени RC-цепи, нетрудно догадаться, что изменение номиналов сопротивления и конденсатора повлечет за собой изменение и постоянной времени. Поэтому, чем меньше емкость и сопротивление, тем короче по времени постоянная времени. Следовательно, заряд или разряд будет происходить быстрее.
Для примера, давайте поменяем значение емкости конденсатора в меньшую сторону. Итак, у нас был конденсатора номиналом в 100 мкФ, а мы поставим 10 мкФ, резистор оставляем такого же номинала в 1 кОм. Посмотрим еще раз на графики заряда и разряда.
Вот так заряжается наш конденсатор номиналом в 10 мкФ
А вот так он разряжается
Как вы видите, постоянная времени цепи в разы сократилась. Судя по моим расчетам она стала равняться T=10 x 10 -6 x 1000 = 10 x 10 -3 = 10 миллисекунд. Давайте проверим графо-аналитическим способом, так ли это?
Строим на графике заряда или разряда прямую на соответствующем уровне и аппроксимируем ее на ось времени. На графике разряда будет проще 😉
Одна сторона квадратика по оси времени у нас 10 миллисекунд (чуть ниже рабочего поля написано M:10 ms), поэтому нетрудно посчитать, что постоянная времени у нас 10 миллисекунд ;-). Все элементарно и просто.
То же самое можно сказать и про сопротивление. Емкость я оставляю такой же, то есть 10 мкФ, резистор меняю с 1 кОм на 10 кОм. Смотрим, что получилось:
По расчетам постоянная времени должна быть T=10 x 10 -6 x 10 x 10 3 = 10 x 10 -2 = 0,1 секунда или 100 миллисекунд. Смотрим графо-аналитическим способом:
100 миллисекунд 😉
Вывод: чем больше номинал конденсатора и резистора, тем больше постоянная времени, и наоборот, чем меньше номиналы этих радиоэлементов, тем меньше постоянная времени. Все просто 😉
Ладно, думаю, с этим все понятно. Но куда можно применить этот принцип зарядки и разрядки конденсатора? Оказывается, применение нашлось…
Интегрирующая RC цепь
Собственно сама схема:
А что будет, если мы на нее будем подавать прямоугольный сигнал с разной частотой? В дело идет китайский генератор функций :
Выставляем на нем частоту 1 Герц и размахом в 5 Вольт
Желтая осциллограмма — это сигнал с генератора функций, который подается на вход интегрирующей цепи на клеммы Х1, Х2, а с выхода мы снимаем красную осциллограмму, то есть с клемм Х3, Х4:
Как вы могли заметить, конденсатор почти полностью успевает зарядиться и разрядиться.
Но что будет, если мы добавим частоту? Выставляю на генераторе частоту в 10 Герц. Смотрим что у нас получилось:
Конденсатор не успевает заряжаться и разряжаться как уже приходит новый прямоугольный импульс. Как мы видим, амплитуда выходного сигнала очень сильно просела, можно сказать, он скукожился ближе к нулю.
А сигнал в 100 Герц вообще не оставил ничего от сигнала, кроме малозаметных волн
Сигнал в 1 Килогерц на выходе вообще не дал ничего…
Еще бы! Попробуй-ка с такой частотой перезаряжать конденсатор 🙂
Все то же самое касается и других сигналов: синусоиды и треугольного. везде выходной сигнал почти равен нулю на частоте 1 Килогерц и выше.
«И это все, на что способна интегрирующая цепь?» — спросите вы. Конечно нет! Это было только начало.
Давайте разберемся… Почему у нас с возрастанием частоты сигнал стал прижиматься к нулю и потом вообще пропал?
Итак, во-первых, эта цепь у нас получается как делитель напряжения , и во-вторых, конденсатор — это частотно-зависимый радиоэлемент. Его сопротивление зависит от частоты. Про это можно прочитать в статье конденсатор в цепи постоянного и переменного тока . Следовательно, если бы мы подавали постоянный ток на вход (у постоянного тока частота 0 Герц), то и на выходе бы тоже получили тот же самый постоянный ток такого же значения, которое загоняли на вход. В это случае конденсатору ведь по барабану. Все что он сможет сделать в этой ситуации — тупо зарядиться по экспоненте и все. На этом его участь в цепи постоянного тока заканчивается и он стает диэлектриком для постоянного тока.
Но как только в цепь подается переменный сигнал, конденсатор вступает в игру. Тут его сопротивление уже зависит от частоты. И чем она больше, тем меньшим сопротивлением обладает конденсатор. Формула сопротивления конденсатора от частоты:
где
Х С — это сопротивление конденсатора, Ом
π — постоянная и равняется приблизительно 3,14
F — частота, Герц
С — емкость конденсатора, Фарад
F — частота, измеряется в Герцах
С — емкость, измеряется в Фарадах
Подробнее здесь: https://remontka.com/news/kondensator-v-tsepi-peremennogo-toka/
Итак, что в результате получается? А получается то, что чем больше частота, тем меньше сопротивление конденсатора. На нулевой частоте у нас сопротивление конденсатора в идеале стает равно бесконечности (поставьте в формулу 0 Герц частоту). А так как у нас получился делитель напряжения
следовательно, на меньшем сопротивлении падает меньшее напряжение. С ростом частоты сопротивление конденсатора очень сильно уменьшается и поэтому падение напряжения на нем стает почти 0 Вольт, что мы и наблюдали на осциллограмме.
Но на этом ништяки не заканчиваются.
Давайте вспомним, что из себя представляет сигнал с постоянной составляющей. Это есть ничто иное, как сумма переменного сигнала и постоянного напряжения. Взглянув на рисунок ниже, вам все станет ясно.
То есть в нашем случае можно сказать, этот сигнал (ниже на картинке) имеет в своем составе постоянную составляющую, другими словами, постоянное напряжение
Для того, чтобы выделить постоянную составляющую из этого сигнала, нам достаточно прогнать его через нашу интегрирующую цепь. Давайте рассмотрим все это на примере. С помощью нашего генератора функций мы поднимем нашу синусоиду «над полом», то есть сделаем вот так:
Итак, все как обычно, желтый входной сигнал цепи, красный — выходной. Простая двухполярная синусоида дает нам на выходе RC интегрирующей цепи 0 Вольт:
Чтобы понять, где нулевой уровень сигналов, я их пометил квадратиком:
Теперь давайте я добавлю постоянную составляющую в синусоиду, а точнее — постоянное напряжение, благо это сделать мне позволяет генератор функций:
Как вы видите, как только я поднял синус «над полом», на выходе цепи я получил постоянное напряжение величиной в 5 Вольт. Именно на 5 Вольт я поднимал сигнал в генераторе функций ;-). Цепочка выделила постоянную составляющую из синусоидального приподнятого сигнала без проблем. Чудеса!
Но мы так и не разобрались, почему цепь называется интегрирующей? Кто хорошо учился в школе, в классе эдак 8-9, то наверняка помнит геометрический смысл интеграла — это есть ничто иное, как площадь под кривой.
Давайте рассмотрим тазик с кубиками льда в двухмерной плоскости:
Что будет, если весь лед растает и превратится в воду? Все верно, вода ровным слоем покроет тазик одной плоскостью:
Но какой будет этот уровень воды? Вот именно — средний. Это среднее значение этих башен из кубиков льда. Так вот, интегрирующая цепочка делает то же самое! Тупо усредняет значение сигналов до одного постоянного уровня! Можно сказать, усредняет площадь до одного постоянного уровня.
Но самый смак получается тогда, когда мы подаем на вход прямоугольный сигнал. Давайте так и сделаем. Подадим положительный меандр на RC интегрирующую цепь.
Как вы видите, постоянная составляющая меандра равна половине его амплитуды. Думаю, вы уже и сами догадались, если бы представили тазик с кубиками льда). Или просто подсчитайте площадь каждого импульса и размажьте его равномерным слоем по осциллограмме, как гов… как сливочное масло по хлебу 😉
Ну а теперь самое веселое. Сейчас я буду менять скважность нашего прямоугольного сигнала, так как скважность — это ничто иное, как отношение периода на длительность импульса, следовательно, мы будем менять длительность импульсов.
Уменьшаю длительность импульсов
Увеличиваю длительность импульсов
Если никто ничего до сих пор не заметил, просто взгляните на уровень красной осциллограммы и все станет понятно. Вывод: управляя скважностью, мы можем менять уровень постоянной составляющей. Именно этот принцип и заложен в ШИМ (Широтно-Импульсной Модуляции). О ней как-нибудь поговорим в отдельной статье.
Дифференцирующая RC цепь
Еще одно ругательное слово, которое пришло с математики — дифференцирующий. Башка начинает сразу же болеть от одного только их произношения. Но, куда деваться? Электроника и математика неразлучные друзья.
А вот и сама дифференциальная цепочка
В схеме мы только переставили резистор и конденсатор местами
Ну а теперь проведем также все опыты, как мы делали с интегрирующей цепью. Для начала подаем на вход дифференциальной цепи низкочастотный двухполярный меандр с частотой в 1,5 Герца и с размахом в 5 Вольт. Желтый сигнал — это сигнал с генератора частоты, красный — с выхода дифференциальной цепочки:
Как вы видите, конденсатор успевает почти полностью разрядится, поэтому у нас получилась вот такая красивая осциллограмма.
Давайте увеличим частоту до 10 Герц
Как видите, конденсатор не успевает разрядиться, как уже приходит новый импульс.
Сигнал в 100 Герц сделал кривую разряда еще менее заметной.
Ну и добавим частоту до 1 Килогерца