Литий-полимерный аккумулятор (LiPo)
В наше время появляется все больше и больше портативной переносной аппаратуры. Это могут быть мобильные телефоны, bluetooth-колонки и различные гаджеты. Наиболее часто используемым источником энергии в этом случае является литий-полимерный аккумулятор (Li-Po).
Такие аккумуляторные батареи имеют превосходную плотность энергии на килограмм , так называемый Вт × час /кг (Wh/kg) или на английский манер gravimetric energy density . Этот параметр показывает, как много энергии содержит аккумулятор либо конденсатор по отношению к его массе. Например, автомобили Тесла используют в своих электрокарах аккумуляторы с плотностью энергии в 254 Вт × час/кг.
Самой бешеной плотностью энергии на килограмм является элемент Уран-235. Если создать все условия для его расщепления, чем и занимаются на АЭС, то можно получить с него энергию до 24 500 000 000 Вт × час/кг! Это почти в 10 000 000 раз выше, чем у бензина. Можно сказать, что 1 кг урана даст в 10 000 000 раз больше энергии, чем 1 кг бензина, если, конечно, «разогнать» уран в ядерном реакторе.
Есть также такой параметр, как плотность энергии по отношению к объему или на английский манер volumetric density energy . Этот параметр показывает как много энергии содержит аккумулятор либо конденсатор по отношению к его объему. Выражается этот параметр, как Вт×час/литр или на английский манер Wh/L. Не забываем, что объем можно выражать также в литрах.
График эффективности различных типов аккумуляторов выглядит так:
Виды литий-полимерных аккумуляторов
В настоящее время существуют множество литий-полимерных аккумуляторов разных форм и видов.
В первую очередь давайте разделим наши аккумуляторные батареи по видам. Есть одноэлементные батареи, которые выдают номинальное напряжение в 3,7 Вольт, а также есть многоэлементные батареи, которые состоят из одноэлементных. Здесь работает правило последовательного и параллельного соединения источников питания.
Получаем, что если соединять последовательно одноэлементные LiPo аккумуляторы, то можно увеличивать кратно их общее напряжение.
*cell — элемент, ячейка.
Одноэлементные аккумуляторы чаще всего можно увидеть в ваших мобильных телефонах и других гаджетах.
Многоэлементные аккумуляторы используются в электровелосипедах, электроскутерах и тд.
Схема контроля и защиты аккумуляторной батареи
На простом одноэлементном аккумуляторе мы можем увидеть термоскотч , который закрывает контакты аккумулятора
Некоторые дешевые одноэлементные аккумуляторы не имеют схемы защиты и контроля от перезаряда и разряда. Выводы в этом случае выходят прямо из батареи.
Но на большинстве аккумуляторов все-таки присутствует схема защиты и контроля заряда
Здесь мы можем увидеть микросхему-контроллер DW01x, которая выполняет сразу несколько функций.
Она разработана специально для литий-ионных/полимерных батарей и защищает их от повреждения или ухудшения срока службы из-за перезаряда, переразряда и/или сверхтока для одноэлементной литий-ионной/полимерной батареи. Более подробно ознакомится с ней можно здесь .
Узнайте что такое литий ионный аккумулятор .
Также можно увидеть микросхему 8205
Эта микросхема является сборкой из двух N-канальных MOSFET транзисторов, которые управляются нашей DW01x.
Более подробно в даташите здесь .
В сборе вся схема заряда на Li-Po одноэлементную батарею выглядит приблизительно вот так:
Пока разряженная батарея не достигнет этого уровня, все попытки зарядить ее тщетны, если только напрямую подать электрический ток сразу на выводы аккумулятора, хотя в этом режиме она все равно может заряжаться, но очень-очень долго. То есть в нашем случае, для того, чтобы снова можно было заряжать батарею, на элементе должно быть напряжение не менее 3 В. Если будет меньше, заряд просто не пойдет.
PS. Эх, сколько было выкинуто таких батареек на свалку человечеством! Люди думали, что батарейка полностью сдохла и отказывалась заряжаться. А всего-то надо было немного подзарядить элемент до уровня разрешения зарядки Overdischarge Release Voltage и спокойно дальше заряжать аккумулятор.
Overcurrent Protection
Ну а также есть замечательный параметр, как перегрузка по току Overcurrent Protection . В нормальном режиме микросхема DW01x постоянно контролирует ток разряда на своем выводе CS. Здесь есть два пути развития событий:
— если на ноге CS будет напряжение 150 мВ (перегруз по току), то через 10 мс батарея уйдет «спать» и полностью отключит нагрузку
— если на этой ноге будет напряжение 1,35 В (режим короткого замыкания выводов) то батарея уйдет «спать» меньше, чем за 500 мкс. То есть как только коротнули выводы, батарея мгновенно отключает нагрузку).
Для того, чтобы батарея вышла из спящего режима, надо полностью отцепить нагрузку, либо сделать так, чтобы нагрузка превышала 500 кОм.
Короткое замыкание без схемы защиты и контроля
А что если устроить короткое замыкание батареи без схемы защиты и контроля? Для этого убираем эту плату и коротим выводы батареи накоротко. Через несколько секунд видим, что ее пучит и разрывает.
Имейте ввиду, что составные батареи не имеют встроенную схему защиты и контроля, так как в основном предназначены для силовых устройств.
Поэтому, с ними нужно быть как можно более осторожными, не замыкать выводы и не перегружать по току, если собираетесь их использовать в своих разработках. Для них идет специальное умное зарядное устройство, которое отключает заряд при полном заряде батареи
либо специальный модуль для заряда таких аккумуляторов
Его можете посмотреть по этой ссылке .
Материал для статьи был подготовлен по видео