Categories: КМБ

Эмиттерный повторитель

Эмиттерный повторитель — это схема с О бщим К оллектором (ОК). Вроде бы название должно говорить само за себя, а вот нет. Так что, не забывайте об этом 😉

Схема эмиттерного повторителя

Давайте разберемся, что значит словосочетание «эмиттерный повторитель»? Если досконально разобрать эту фразу, то она означает, что на эмиттере что-то должно повторяться.

Упрощенная схема эмиттерного повторителя выглядит вот так:

На первый взгляд  вроде бы схема как схема, но она обладает 4 важными свойствами:

1) Напряжение U вых меньше U вх на каких-то 0,6-0,7 Вольт (падение напряжения на базе-эмиттере)

2)U вых в точности  повторяет  по форме и фазе U вх

3) Сопротивление со стороны входа (входное сопротивление) большое

4) Сопротивление со стороны выхода (выходное сопротивление) маленькое

Входное и выходное сопротивление эмиттерного повторителя

Раз уж упомянули про входное и выходное сопротивление , то как же его рассчитать? Оказывается, сопротивление со стороны входа (входное сопротивление) рассчитывается очень просто:

R вх = R э х β,

где R э — это сопротивление резистора в цепи эмиттера

β коэффициент усиления по току

Также не стоит забывать, что когда мы цепляем нагрузку, то меняется и входное сопротивление, так как параллельно R э мы цепляем какое-то сопротивление, являющееся нагрузкой.

Эмиттерный повторитель уменьшает выходное сопротивление источника сигнала в β раз. Допустим, если у нас выходное сопротивление источника сигнала равняется 500 Ом, а β в схеме эмиттерного повторителя равняется 100, то на выходе эмиттерного повторителя мы уже получим источник сигнала с выходным сопротивлением в 5 Ом.

Но опять же, раз выходной сигнал у нас стает меньше на 0,6-0,7 Вольт, получается, что он даже меньше входного!?

Значит схема не усиливает напряжение, а даже его чуток ослабляет). Вот тебе и транзистор  — усилитель сигналов)) Но-но! Рано огорчаться. Так как входное сопротивление такой схемы большое, значит, мы можем нагрузить на вход эмиттерного повторителя какой-либо сигнал, не боясь, что он просядет, а на выход мы можем подключить низкоомную нагрузку. В этом и заключается вся прелесть 😉

Так, а теперь давайте представим, что было бы, если бы мы напрямую, без эмиттерного повторителя, подали сигнал в низкоомную нагрузку с генератора сигнала с высоким выходным сопротивлением? Да сигнал у нас просел бы в несколько раз! Чтобы это понять, читаем статью про входное и выходное сопротивление .

Для чего нужна эта схема

Значит, эмиттерный повторитель в электронике выполняет роль миротворца между источником сигнала с высоким выходным сопротивлением и низкоомной нагрузкой. Еще более простыми словами: эмиттерный повторитель понижает выходное сопротивление источника сигнала . В этом и заключается его роль в электронике 😉

Также запомните простое правило: эмиттерный повторитель дает усиление по току, а не по напряжению .  А так как повышается сила тока, следовательно, и мощность, отдаваемая в нагрузку, тоже будет больше, так как P=IU , где P — это мощность, I — сила тока, U — напряжение.

Расчет эмиттерного повторителя

Наше техническое задание звучит так:

Ра НННННннванвыавпНннаНаНННГггываYfit YFutYfsdfYYYYyhfsdfYf Рассчитать схему эмиттерного повторителя для звукового сигнала. +Uпит=12 Вольт.

1) Так как звук у нас представляет колебание как в одну, так и в другую сторону, следовательно, наш сигнал должен колебаться как в положительную, так и в отрицательную сторону. Поэтому, чтобы сигнал имел как можно больший размах, мы должны сделать так, чтобы он находился в середине активного режима. Так как мы сигнал будем снимать с эмиттера, следовательно,  в статическом режиме (то есть когда НЕ подаем сигнал на вход нашего эмиттерного повторителя) у нас напряжение на эмиттере должно быть равно половине напряжения питания. Или буквами:

U э = U пит / 2 = 12/2=6 Вольт

2) Чтобы зря не рассеивать на транзисторе тепло,  оптимальный ток покоя берут в 1 мА. Это значит, что по цепи +12В——> коллектор——-> эмиттер——>R э ——>земля должен течь ток с силой в 1 мА. Здесь мы не учитываем крохотный ток базы. Как этого добиться? Вспоминаем закон Ома для участка цепи и высчитываем номинал резистора:

I э =U э / R э

R э =U э / I э

R э =6 В/0,001 А=6 000 Ом = 6 КилоОм .

Берем ближайший из ряда на 6,2 КилоОма

3) Какая же сила тока должна течь через базу-эмиттер, чтобы обеспечить ток покоя в 1 мА?  Так как в нашем примере ток эмиттера I э почти равен току коллектора I к (если, конечно, не учитывать крохотный базовый ток) то вспоминаем формулу зависимости тока базы от тока коллектора:

Я взял транзистор КТ817Б,  замерял его  коэффициент усиления по току , то есть β , и падение напряжения на переходе база-эмиттер с помощью транзистор-тестера :

Итого, β (hFE на транзистор-тестере) равно около 300, падение напряжения 0,55 Вольт.

Следовательно, I б = I к / β = 1/300 = 3,3 мкА

4)Высчитываем ток делителя напряжения , который образуют два резистора: R б и R э .  Его берут в основном в 10 раз больше, чем ток базы:

I дел = 10 х I б = 10 х 3,3 = 33 мкА.

5)Считаем напряжение на базе. Оно равняется:

U б = U э + U бэ = 6 + 0,55 = 6,55 Вольт.

6)Теперь для простоты расчета чертим небольшую схемку:

Из закона Ома получаем следующие расчеты:

R бэ = 6,55  В / 33 мкА = 200 КилоОм . Берем ближайший из ряда на 200 КилоОм.

Так как сумма падений напряжений на резисторах равняется Uпит , следовательно, на R б будет напряжение 12-6,55 = 5,45 Вольта.

R б = 5,45 В / 33 мкА = 165 КилоОм . Берем ближайший из ряда на 150 КилоОм.

7) Конденсаторы в схеме нам служат для того, чтобы убрать постоянную составляющую, то есть постоянный ток, который присутствует на базе и эмиттере. Нам ведь нужен только переменный сигнал без примеси постоянного тока, так ведь? Для выбора конденсаторов правило простое: постоянная времени RС-цепи должна быть больше периода передаваемого сигнала самой низкой частоты примерно в 100 раз.

Не будем сейчас говорить от дифференциальных и интегральных цепях (блин, голова заболела от одного их упоминания ), а просто разберемся, как высчитывается постоянная времени RC- цепи. Назовем ее t . Вычисляется она по формуле:

t=R вх х C1

Входное сопротивление эмиттерного повторителя высчитывается по формуле:

R вх = R э х β = 6000 х 300 = 1,8 МегаОм.

Для звукового сигнала самая низкая частота — это 20 Герц (предел слуха человека средних лет), находим период и значение конденсатора:

T=1/f

R вх х C1=100 х 1/f

R вх х С1 = 100 х 0,05

1,8 х 10 6 х С1 = 5

С1= 5 / 1,8 х 10 6 = 2,7 мкФ . То есть берем конденсатор от 2,7 мкФ. Думаю, 10 мкФ будет самое оно.

С2 — это вход какого-либо следующего каскада, следовательно, он рассчитывается аналогично. В нашем примере возьмем его на 100 мкФ, так как чем низкоомнее нагрузка, тем большая емкость должна быть на выходе каскада.

Статья для Вас — электроника своими руками инструкции и схемы.

Следовательно, вся наша схема будет с такими параметрами:

Собираем схему в реале и проверяем в деле:

Итак, входной сигнал у нас будет красным цветом, выходной — желтым. Подаем сигнал с генератора частоты амплитудой в 0,5 Вольт. Не цепляем пока никакую нагрузку и смотрим, что у нас получилось:

Как вы видите, у нас получилось два абсолютно одинаковых сигнала, которые даже по фазе повторяют друг друга.  Короче говоря, что на входе, то и на выходе.

Но фишка немного в другом. Давайте я сейчас нагружу входной сигнал резистором в 500 Ом. Область, выделенную штрихпунктирной линией мы пока что НЕ рассматриваем.

Какое напряжение U вх у нас сразу станет? Все зависит от выходного сопротивление генератора. Так как я подаю сигнал через делитель напряжения, сделанный на потенциометре, следовательно, у меня красный сигнал очень сильно просядет, что мы и видим на осциллограмме ниже. На желтый пока что не обращайте внимание.

Но что будет, если я нагружу этот сигнал  тем же самым резистором в 500 Ом через эмиттерный повторитель? Ставим резистор на выход эмиттерного повторителя:

Смотрим осциллограмму:

Входной сигнал даже не просел, даже тогда, когда мы его нагрузили через эмиттерный повторитель ;-).

А где же та самая обещанная просадка напряжения  в 0,6-0,7 Вольт? Если бы мы подавали сигнал сразу на базу, без делителя напряжения на резисторах R б и R бэ , то мы увидели бы просадку.

Недостатки эмиттерного повторителя

Есть, конечно, большой минус эмиттерного повторителя. Заключается он в том, что сигнал на выходе тупо срезается при отрицательной полуволне при сильной низкоомной нагрузке. Поставив резистор в 100 Ом, у нас получается вот такой ералаш:

Но почему так произошло?

Не хочу приводить дотошные формулы и выводить их, просто скажу, что из-за слишком низкоомной нагрузки, у нас получается так, что на эмиттере напряжение стает больше, чем на базе, а следовательно, транзистор тупо «затыкается», так как в этом случае PN-переход оказывается включен в обратном направлении.

Как же с этим бороться?

Можно уменьшить R э , но тогда и ток покоя будет больше, что приведет опять же к расточительству электроэнергии и нагреву транзистора.

Другой вариант, взять так называемый транзистор Дарлингтона , который имеет очень большое входное сопротивление порядка 10 Мегаом и обладает большим коэффициентом усиления β . Все дело в том, что такой транзистор состоит из двух транзисторов, коэффициент усиления которого будет равен:

β общее = β 1 х β 2

где

β 1 — коэффициент усиления первого транзистора

β 2 — коэффициент усиления второго транзистора

Вот так выглядит транзистор Дарлингтона:

Если Вам будет понятнее в видео, то вот для Вас:

Заключение

Также в ретроусилителях мощности уже не парятся и используют эмиттерные повторители в так называемом режиме работы класса B, где усиливается по току только одна полуволна сигнала каждым транзистором. А если честно, лучше вообще забить на этот эмиттерный повторитель, так как есть радиоэлементы, которые не надо рассчитывать и которые выдают усиление во много раз превосходящее, чем у эмиттерного повторителя и без всяких заморочек.

admin

Share
Published by
admin
Tags: КМБ

Recent Posts

Apple: история логотипа

Как менялся логотип Apple на протяжении многих лет. Логотип Apple — это не просто символ,…

6 дней ago

Security Boot Fail при загрузке Acer — решение проблемы

Security Boot Fail при загрузке Acer — решение проблемы При загрузке ноутбука Acer с флешки,…

3 недели ago

Ноутбук не включается — варианты решения

Ноутбук не включается — варианты решения Если при попытке включить ноутбук вы обнаруживаете, что он…

3 недели ago

The AC power adapter wattage and type cannot be determined — причины и решение

The AC power adapter wattage and type cannot be determined — причины и решение При…

3 недели ago

Свистит или звенит блок питания компьютера — причины и решения

Свистит или звенит блок питания компьютера — причины и решения Некоторые владельцы ПК могут обратить…

3 недели ago

Мигает Caps Lock на ноутбуке HP — почему и что делать?

Мигает Caps Lock на ноутбуке HP — почему и что делать? При включении ноутбука HP…

3 недели ago