Электрическое поле – феномен, который изучает классическая электродинамика. Наряду с магнитным и электромагнитным полем термин «электрическое поле» является одним из фундаментальных в современной физической науке. С использованием этого термина и понятия электрического заряда можно описать намного большее количество природных явлений, чем может показаться неосведомлённому в физике человеку.

Общая характеристика

Электрическим полем называется специфическая разновидность материи, формируемая микротелами, имеющими заряды. Тем не менее, это не только совокупность заряженных тел: данным термином именуется также микрополе, которое формирует в пространстве каждое заряженное тело. Именно совокупность этих микрополей и создаёт электрические поля в привычном для нас понимании.

Существование и непрерывное функционирование электрического поля обусловлено непрерывным взаимодействием частиц, имеющих заряды, в ходе которого они непосредственно сообщают электромагнитную энергию один другому посредством электрических полей, которые окружают каждое из них. Графически электрическое поле следует изображать в виде схематичной совокупности линий, в физической науке именуемых силовыми.

Силовые линии

Благодаря достижениям современной физики мы знаем, что электрические силы объясняют все химические и физические свойства веществ, от атома до животной клетки. Естествоиспытателями, которые заложили фундамент научного знания об электрическом поле, были Андре-Мари Ампер, Майкл Фарадей и Джеймс Клерк Максвелл.

Электрический заряд

Понятие электрического заряда занимает центральное место в классической теории электромагнетизма. Электрическим зарядом в физике называется величина, которая характеризует способность объектов входить в электрические взаимодействия. Следует подчеркнуть, что тела с одноимёнными зарядами всегда отталкиваются, а тела с разноимёнными – притягиваются друг к другу.

Электрический заряд

Фундаментальная характеристика заряда заключается в его двойственной природе: заряды бывают и положительными, и отрицательными. Так, все заряженные тела условно делятся физиками на два подтипа, при этом все тела одного из подтипа отталкивают друг друга, но притягивают тела из второго подтипа. Например, если частица А отталкивает частицу В, но частица А притягивает частицу С, то частица В тоже будет притягивать частицу С.

Физики до сих пор не выяснили, почему тела обладают этим глобальным, универсальным и, при ближайшем рассмотрении, элементарным свойством. Тем не менее, термины «отрицательный заряд» и «положительный заряд» являются противоположными проявлениями одного и того же качества.

Заряженная частица всегда рождается в паре с частицей противоположного заряда. Например, пара положительно и отрицательно заряженных электронов (позитрон и негатрон) появляется на свет посредством распадения фотона. При этом процессе изменения заряда не происходит, другими словами, изменение заряда равно нулю до и после «превращения» фотона.

Чтобы понять, в чём заключается сущность данной скалярной величины и из чего состоит электрическое вещество, следует изучить два фундаментальных свойства электрического заряда: квантование и сохранение заряда.

Принцип квантования заряда

Даже начинающий физик знает: в природе электрические заряды состоят из дискретных зарядов, имеющих постоянную величину, которая характеризуется как заряд электрона и обозначается символом е. Например, положительный заряд позитрона и отрицательный заряд негатрона равны по своей величине. Квантование заряда – это и есть природное уравнивание величин зарядов двух разноимённо заряженных частиц. Важное понятие в терминологии квантования – дискретность заряда. Согласно новейшим физическим теориям, заряд квантуется, то есть обладает свойством дискретности: один заряд состоит из минимальных порций зарядов, которые далее разделить невозможно.

Принцип сохранения заряда

Этот принцип следует из природы «рождения» двух миркотел, имеющих разноимённые заряды. Это фундаментальный эмпирический закон, не имеющий противоречий ни в одном из сделанных до сегодняшнего дня исследований. Дословно принцип сохранения гласит: в закрытой системе электрический заряд, носящий и другое название – алгебраическая сумма двух разноимённых зарядов, –остаётся постоянным.

Кулоновская сила

Концепция Кулона характеризует взаимодействие между двумя зарядами, пребывающими в состоянии покоя. Она гласит: два недвижимых заряда отталкивают либо притягивают один другого с силой, которая прямо пропорциональна произведению величин зарядов, но обратна длине расстояния между этими зарядами во второй степени. Вместе с этим, сила взаимодействия пары зарядов не может измениться при присутствии третьего.

С помощью кулоновского принципа естествоиспытатель может отыскать состояние равновесия в ситуации свободного перемещения зарядов под воздействием силы другого типа, при котором заряды будут распределяться с постоянным коэффициентом. Сила Кулона предопределена третьим законом Ньютона, который утверждает, что заряды воздействуют один на другого с силами, которые равны по модулям, но противоположны по направлениям.

Суперпозиция полей

Закон Кулона и все вытекающие из него утверждения являются лишь основой для другого, более масштабного принципа – закона суперпозиции. Исходя из этого фундаментального утверждения, силы, которые действуют на заряды, каждый из которых располагается в конкретной точке объединённой системы, являют собой сумму сил, имеющих строгое направление и формируемых отдельными группами зарядов по отдельности и влияющих на заряды в конкретных точках.

Принцип суперпозиции полей

В отличие от закона Кулона, принцип суперпозиции может быть недостаточным в рамках некоторых квантовых явлений в электрическом поле.

Теория близкодействия

Согласно теории близкодействия, электрические заряды передают свои взаимодействия с помощью особых вещественных частиц-посредников и производятся с конечной скоростью.

Основателями теории близкодействия в классической физике являются философ и физик Рене Декарт и естествоиспытатель Майкл Фарадей. В рамках данной концепции принято считать, что частицы, которые являются посредниками в процессе передачи взаимодействий, движутся со строго определённой скоростью, которая стремится к скорости света.

Переносчиками, или телами-посредниками, которые передают взаимодействие зарядов, являются кванты электрического поля, движущиеся со скоростью света.

Теория близкодействия

Электроемкость, конденсатор и напряженность электрического поля

Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.

Силовые линии

Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.

Изображение силового поля

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного. Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.

Электрический дипольный момент

Краткая история изучения электрического поля

Считается, что инженер и физик Шарль Кулон стал первым исследователем взаимодействия статичных зарядов. Именно он вывел принцип их взаимодействия. Фундаментом исследований Кулона стала теория гравитационного взаимодействия Исаака Ньютона.

Ганс Эрстед стал учёным, открывшим магнитные свойства электрического тока и поля, а благодаря Джеймсу Максвеллу мы знаем, что электрическое поле не может существовать без магнитного, которое и индуцирует его. Также Максвелл утвердил концепцию близкодействия электромагнитных взаимодействий.

Советую прочитайте про свойства магнитного поля .

Ганс Эрстед и Джеймс Максвелл

Тем не менее, электрическое поле стало объектом человеческих исследований задолго до последних веков. Ещё Фалес Милетский в 7 веке до нашей эры исследовал природу статического электричества.

В конце 19 века Джозефом Томсоном был открыт электрон – «живой» образец носителя электричества. Спустя годы Эрнст Резерфорд доказал место в структуре атомов, на котором располагаются электроны.

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему «Электрическое поле»:

admin

Share
Published by
admin

Recent Posts

Консоль удаленного рабочего стола(rdp console)

Клиент удаленного рабочего стола (rdp) предоставляет нам возможность войти на сервер терминалов через консоль. Что…

2 месяца ago

Настройка сети в VMware Workstation

В VMware Workstation есть несколько способов настройки сети гостевой машины: 1) Bridged networking 2) Network…

2 месяца ago

Логи брандмауэра Windows

Встроенный брандмауэр Windows может не только остановить нежелательный трафик на вашем пороге, но и может…

2 месяца ago

Правильный способ отключения IPv6

Вопреки распространенному мнению, отключить IPv6 в Windows Vista и Server 2008 это не просто снять…

2 месяца ago

Ключи реестра Windows, отвечающие за параметры экранной заставки

Параметры экранной заставки для текущего пользователя можно править из системного реестра, для чего: Запустите редактор…

2 месяца ago

Как управлять журналами событий из командной строки

В этой статье расскажу про возможность просмотра журналов событий из командной строки. Эти возможности можно…

2 месяца ago