Особенности светодиодной технологии, схемы светодиодных устройств, перспективы OLED-светодиодов

Светодиоды вытеснили большинство других технологий в освещении. Благодаря своей универсальности, низкой стоимости и эффективности светодиоды теперь используются в любых приложениях в самых разных случаях: индикаторы состояния, подсветка ЖК-дисплеев, а также освещение помещений или уличное освещение — все это области, в которых теперь более удобно (экономически, а не технологически) использовать светодиоды, а не классические источники излучения света.

Давайте посмотрим на характеристики, которые сделали светодиоды стандартом для источников света и связанных типов приложений.

Физика светодиода

Светодиод — это активный полупроводниковый электронный компонент, основой которого является диод . Фраза «светоизлучающий диод» подчеркивает, что эта технология представляет собой не что иное, как p-n-переход с геометрическими и физическими характеристиками, предназначенный для использования эффекта электролюминесценции полупроводников.

Фактически, при прямом смещении p-n-перехода с соответствующим напряжением, превышающим пороговое (или прямое) напряжение, заряды около перехода перемещаются с одного энергетического уровня на другой.

Когда дырки и электроны рекомбинируют, если выделяемая энергия достаточно высока, будут испускаться фотоны, частота которых (следовательно, цвет) и сила света зависят от физических характеристик материала и от уровня напряжения, приложенного к устройству. Это основа цветных светодиодов.

Помимо цвета излучаемого света, минимальное пороговое напряжение, запускающее ток, также зависит от типа полупроводника, из которого изготовлено устройство. Наиболее часто используемые материалы для изготовления светодиодов — это AlGaAs, GaAlP, GaAsP, SiC, GaN, GaP, Si и C.

Подробнее про устройство светодиодов читайте здесь: Как устроены и работают светодиоды , а про их производство здесь: Как делают светодиоды

Схемы светодиодных устройств

Светодиод — это электронный компонент, управляемый током. По этой причине в цепи управления всегда должно быть предусмотрено сопротивление, ограничивающее ток, без которого единственным сопротивлением было бы внутреннее сопротивление самого перехода. Отказ от ограничения тока может привести к повреждению компонента и отклонению поведения от одного устройства к другому.

Полезная статья на эту тему: Как правильно рассчитать и подобрать резистор для светодиода

На рисунке ниже показана базовая схема управления светодиодом. В этой схеме положительное напряжение подается на базу полевого МОП-транзистора , вызывая прохождение тока между стоком и истоком, тем самым проводя светодиод на сток.

Обратите внимание на наличие ограничивающего резистора. Предполагая, что оптимальный прямой ток компонента равен If , пороговому напряжению Vth и напряжению питания светодиода Vin , номинал ограничивающего резистора рассчитывается как R = ( Vin — Vth ) / If.

Например, классический светодиод, используемый в качестве индикатора состояния питания, может иметь Vth = 1,8 В и If = 20 мА. Предполагая запитать схему напряжениемVin = 5 В, ограничительный резистор будет иметь значение R = (5 — 1,8) / 0,02 = 160 Ом.

Базовая схема драйвера светодиода

Предлагаемая схема используется, когда управление осуществляется через микроконтроллер . В этом случае всегда рекомендуется использовать транзистор (или аналогичный компонент), способный выдерживать прямые токи светодиодов: если компонент был подключен непосредственно к выходу микроконтроллера, риск повреждения микросхемы будут чрезвычайно высокими.

Очевидно, что если есть необходимость управлять мощными светодиодами (которые могут поглощать даже более 3 Вт или 5 Вт), необходимо использовать драйверы, соответствующие требуемому току.

Одной из характеристик, которая позволила светодиодам стать популярными в мире освещения, несомненно, является возможность использования метода широтно-импульсной модуляции (ШИМ) для достижения диммирования, то есть повышения или понижения тока, протекающего в светодиодах (следовательно, при этом регулируется его световой поток).

Этот метод заключается в подаче управляющего сигнала, имеющего прямоугольную форму с переменным рабочим циклом: поэтому используемый ток будет пропорционален времени Ton приложенной волны, что позволяет электронное управление яркостью светодиода.

ШИМ-управление

Подробнее об этом смотрите здесь: Регулирование яркости светодиодов, принципы ШИМ-регулирования

Ясно, что метод ШИМ, который чрезвычайно прост в применении, может оказаться неэффективным, если требуется точная регулировка яркости. Фактически, помните, что, поскольку светодиод является диодом во всех отношениях, его вольт-амперная характеристика нелинейна и, следовательно, изменения тока, полученные путем изменения рабочего цикла, также являются нелинейными.

Чтобы преодолеть этот недостаток, необходимо использовать специально разработанные драйверы светодиодов, обеспечивающие постоянный ток по сравнению с пропорциональным сигналом напряжения. Это решение позволяет избежать непрерывных циклов включения и выключения светящихся компонентов, улучшая как продолжительность работы устройств, так и качество излучаемого света, поскольку при этом он не мерцает.

Еще несколько полезных материалов про схемы подключения светодиодов:

Хорошие и плохие схемы включения светодиодов

Применение светодиодов в электронных схемах

Несколько простых схем питания светодиодов

Как правильно подключить светодиод к осветительной сети

Применение светодиодов

Как упоминалось выше, светодиоды очень универсальны, и это также связано с тем, что доступны разные типы.

Классифицируя их по рассеиваемой мощности (следовательно, по производимому световому потоку), мы можем в основном найти три типа светодиодов: светодиоды малой мощности, светодиоды высокой яркости и светодиоды большой мощности.

Маломощные светодиоды имеют типичный прямой ток 15 мА и используются в качестве индикаторов состояния в электронных устройствах (индикатор включения, состояние соединения, индикатор связи между устройствами и т. д.). Их использование является самым классическим и старым. Угол освещения не важен для этого типа устройств.

Светодиоды высокой яркости имеют типичный прямой ток в диапазоне от 30 мА до 100 мА и могут использоваться в качестве элементов слабого освещения (например, индикаторов пешеходных дорожек), хотя в основном они используются в качестве подсветки сегментных дисплеев и ЖК-панелей. Последнее дало значительный импульс распространению светодиодов, поскольку большинство ЖК-панелей современных телевизоров используют светодиодную подсветку.

RGB-светодиод

Мощные светодиоды имеют прямой ток от 100 мА и выше. Легко представить, что этот тип устройств имеет значительно более высокую стоимость по сравнению с двумя другими категориями, а его тепловые характеристики требуют тщательного проектирования методов охлаждения устройства.

Типичное применение мощных светодиодов — это, несомненно, функциональное и уличное освещение. Одно устройство этого типа может излучать световой поток даже более 350 люмен, а объединив несколько светодиодов, можно получить настоящие уличные фонари. Уличное освещение с помощью светодиодных уличных фонарей — один из краеугольных камней умных городов .

Автономный уличный светодиодный светильник с солнечной панелью

Новые горизонты светодиодов

В последние годы на рынке появилась технология, в которой используются органические компоненты (точнее, пластичные проводящие полимеры), а также электролюминесценция этих материалов.

Это технология, называемая органическими светодиодами (OLED), которая используется в конструкции дисплеев и позволяет создавать тонкие, а значит, гибкие устройства, особенно подходящие для носимых устройств и мобильного мира. В отличие от использования светодиодов в качестве подсветки ЖК-дисплея, OLED образуют активную матрицу самого дисплея!

Гибкие световые панели Luflex, LG OLED сделаны на гибкой пластиковой основе, которая позволяет им изгибаться и скручиваться. Разнообразие форм и размеров этих гибких панелей дает дизайнерам, архитекторам и художникам возможность создавать из них проекты, которые раньше были невозможны:

На сегодняшний день все еще нет эффекта масштаба, способного сделать эту технологию экономически конкурентоспособной, но исследования продвинулись вперед и были разработаны многочисленные производственные процессы (AMOLED, PHOLED, PLED, SM-OLED, SOLED, TOLED).

Информация, опубликованная на данном веб-сайте, представлена исключительно в ознакомительных целях, за применение этой информации администрация сайта ответственности не несет.

admin

Share
Published by
admin

Recent Posts

Консоль удаленного рабочего стола(rdp console)

Клиент удаленного рабочего стола (rdp) предоставляет нам возможность войти на сервер терминалов через консоль. Что…

2 месяца ago

Настройка сети в VMware Workstation

В VMware Workstation есть несколько способов настройки сети гостевой машины: 1) Bridged networking 2) Network…

2 месяца ago

Логи брандмауэра Windows

Встроенный брандмауэр Windows может не только остановить нежелательный трафик на вашем пороге, но и может…

2 месяца ago

Правильный способ отключения IPv6

Вопреки распространенному мнению, отключить IPv6 в Windows Vista и Server 2008 это не просто снять…

2 месяца ago

Ключи реестра Windows, отвечающие за параметры экранной заставки

Параметры экранной заставки для текущего пользователя можно править из системного реестра, для чего: Запустите редактор…

2 месяца ago

Как управлять журналами событий из командной строки

В этой статье расскажу про возможность просмотра журналов событий из командной строки. Эти возможности можно…

2 месяца ago